Mark Scheme 4725 June 2006

Mark Scheme

25	Mark Scheme	Two elements correct All four elements correct
. (7.4)	B1	Two elements correct
i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	B1 2	All four elements correct
(ii) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1	A – B correctly found
<i>k</i> = 3	B1 2	Find k
	4	
(i)	M1	For 2 other correct vertices
	A1 2	For completely correct diagram
$(ii) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	B1 B1 2	Each column correct
	4	
(i) 2 + 3i	B1 1	Conjugate seen
(ii)	M1	Attempt to sum roots or consider x terms in
	A1 M1	expansion or substitute $2 - 3i$ into equation and equate imaginary parts
<i>p</i> = -4	A1	Correct answer Attempt at product of roots or consider last
<i>q</i> = 13	4	term in expansion or consider real parts Correct answer
	5	

Mark Scheme

4725		Mark Scheme		June 2006 Consider the sum as two separate parts Correct formula stated	1
	1		,	Sulle 2000 Naths	THS .
4.	$\Sigma r^3 + \Sigma r^2$	M1		Consider the sum as two separate parts	YOUN
	$\Sigma r^{2} = \frac{1}{6}n(n+1)(2n+1)$	A1		Correct formula stated	
	$\Sigma r^3 = \frac{1}{4}n^2(n+1)^2$	A1		Correct formula stated	
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1		Attempt to factorise and simplify or expand both expressions	
		A1	5	Obtain given answer correctly or complete verification	
			5		
5.	(i) -7i	B1 B1	2	Real part correct Imaginary part correct	
	(ii) 2 + 3i	B1 B1		iz stated or implied or $i^2 = -1$ seen Real part correct	
	-5 + 12i		3	Imaginary part correct	
	(iii) $\frac{1}{5}(4-7i)$ or equivalent	M1 A1		Multiply by conjugate Real part correct	
	5	A1	3 8	Imaginary part correct N.B. Working must be shown	
6	(i) Circle, Centre <i>O</i> radius 2 One straight line	B1 B1 B1		Sketch showing correct features	-
	Through O with +ve slope In 1 st quadrant only	B1 B1	5		
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving equations or from graph	
		A1	2 7	Correct answer stated as complex number	

4725	Mar	k Scheme	e	June 2006	An and a second
7.	(i)	M1		Attempt at matrix multiplication	OUD.COM
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct A ² Correct A ³	
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix}$	B1	1	Sensible conjecture made	
	(0 1 <i>)</i> (iii)	B1 M1 A1 A1	4	State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion	
8.	(i)	M1		Correct expansion process shown	
	$a\left[\begin{array}{c}a \\ 2 \\ 1\end{array}\right] - 4\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right] + 2\left[\begin{array}{c}1 \\ 1 \\ 2\end{array}\right]$	A1		Obtain correct unsimplified expression	
	$a^2 - 2a$	A1	3	Obtain correct answer	
	(ii)	M1		Solve their det $\mathbf{M} = 0$	
	a = 0 or $a = 2$	A1A1ft	3	Obtain correct answers	
	(iii) (a)	B1 B1		Solution, as inverse matrix exists or M non- singular or det $\mathbf{M} \neq 0$	
	(b)	B1 B1	4	Solutions, eqn. 1 is multiple of eqn 3	
			10		J

4725	Mark Schem	e	June 2006 June 2006 Show that terms cancel in pairs	
9. (i) (ii) (iii) $(n + 1)^3 - 1 - \frac{3}{2}n(n + 1) - n$ $\frac{1}{2}n(n + 1)(2n + 1)$	M1 A1 M1 A1 B1 B1 M1 A1 A1	2 2 6 10	Show that terms cancel in pairs Obtain given answer correctly Attempt to expand and simplify Obtain given answer correctly Correct Σr stated $\Sigma 1 = n$ Consider sum of three separate terms on RHS Required sum is LHS – two terms Correct unsimplified expression Obtain given answer correctly	3

Mark Scheme

4725	Mar	k Schem	e	WWWW, TAUN AND AND AND AND AND AND AND AND AND AN
10	(i) $\alpha + \beta + \gamma = 2$ $\alpha \beta \gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	.7
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	<i>p</i> is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	<i>q</i> = -2	Alft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q .